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Abstract
Screening of a strongly charged macroion by its multivalent counterions cannot be described in
the framework of a mean-field Poisson–Boltzmann (PB) theory because multivalent counterions
form a strongly correlated liquid (SCL) on the surface of the macroion. It was predicted that a
distant counterion polarizes the SCL as if it were a metallic surface and creates an electrostatic
image. The attractive potential energy of the image is the reason why the charge density of
counterions decreases faster with distance from the charged surface than in PB theory. Using
the Monte Carlo method to find the equilibrium distribution of counterions around the
macroion, we confirm the existence of the image potential energy. It is also shown that, due to
the negative screening length of the SCL, −2ξ , the effective metallic surface is actually above
the SCL by |ξ |.
(Some figures in this article are in colour only in the electronic version)[1]

1. Introduction

In this paper we deal with a problem in which one large
and strongly charged ion, called a macroion, is screened by
much smaller but still multivalent counterions, each with a
large charge Ze (e is the proton charge); for brevity, we call
them Z ions. A variety of macroions are of importance in
chemistry and biology, including charged lipid membranes,
colloids, DNA and viruses. Multivalent metal ions such as
La3+, dendrimers and short polyelectrolytes can play the role
of the screening Z ions.

To illustrate the fundamental aspects of screening we use
the simple geometry of a solid occupying the half-space x � 0,
whose surface at x = 0 has a large uniform surface charge
density −σ . The surface charge is screened by an aqueous
solution of positive, spherical Z ions with radius a, which
occupies the rest of space x > 0 (see figure 1). Both the
macroion and the aqueous solution have dielectric constant
ε � 80. If all of the Z ions were to condense on the macroion’s
surface, their total charge per unit area would equal σ . In
such a neutral system, the concentration of Z ions N(x) → 0
at x → ∞. The main goal of this paper is to discuss the
behavior of N(x). The solution of the Poisson–Boltzmann
(PB) equation for this problem has been known for nearly a

century [1, 2]. The Gouy–Chapman solution is

N(x) = 1

2π Z 2lB

1

(λ+ x − a)2
, (1)

where λ = e/2πσ lB Z is the Gouy–Chapman length and
lB = e2/(εkBT ) � 0.71 nm is the Bjerrum length. We have
modified the standard Gouy–Chapman formula, taking into
account the finite radius of the Z ions, which cannot approach
the surface closer than x = a.

It was shown [3–11] that the Gouy–Chapman solution fails
when both σ and Z are large enough. The reason it fails is that,
in addition to λ, there is a second length scale in the problem
due to the discreteness of charge. When the condensed Z
ions neutralize the charge of the plane, the two-dimensional
concentration of Z ions is n = σ/Ze, and the surface area
per ion, the Wigner–Seitz cell, can be approximated as a disc
of radius b such that πb2 = 1/n. Thus, b = (πn)−1/2 =
(Ze/πσ)1/2 and 2b is approximately the distance between Z
ions. We can construct the dimensionless ratio

b

λ
= 2�, � = Z 2e2/εb

kBT
. (2)

Here � is the dimensionless Coulomb coupling constant or
the inverse dimensionless temperature measured in units of a
typical interaction energy between Z ions. For example, at
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Figure 1. A stray positive Z ion (elevated black sphere) at a distance
x from the surface (thick line) of a negatively charged planar
macroion (shaded region). Other Z ions (black spheres), condensed
at the surface, are on average a distance λ above the macroion’s
surface. The dashed line indicates the average distance, xc = a + λ,
from the macroion’s surface to the adsorbed Z -ions’ centers. The
stray Z ion and its negative image charge (white sphere) are
equidistant from the effective metallic surface, which is shown by the
thin line at xmet = xc + |ξ |.

Z = 3 and DNA like σ = 0.95e nm−2 used in this paper, we
get � = 6.4, λ � 0.79 nm and b � 1.0 nm. Thus, the Coulomb
repulsion energy of the Z ions dominates the thermal energy.
The result is a strongly correlated liquid, which has short-
range order similar to a Wigner crystal [3–15] and is located,
practically, at the very surface of the macroion. This paper
deals only with the strong coupling case: � � 1. Another
definition for a Coulomb coupling parameter, � = 2�2, was
introduced in [9], and of course, in the limit � � 1, � � 1
as well.

Mean-field treatments, along the lines of PB theory, fail
at � � 1 since, when a Z ion strays away from the plane to
distances x − a � b, the electric field of his neighbors has no
significant x̂ projection. In this range, the stray Z ion is only
affected by the electric field of its Wigner–Seitz cell (a disc of
radius b). Therefore, at x − a � b, the surface charge of the
macroion is unscreened and the electric field is 2πσ/ε. Thus,
for 0 < x − a � b,

N(x) = σ

Zeλ
exp[−(x − a)/λ]. (3)

(Here, following [5] we used an expression for N(a) that
ignores the atomic structure of water, while [3, 4] tried to take
this structure into account.)

Remarkably, the same length λ characterizes both
this exponential decay and the Gouy–Chapman solution,
equation (1). It is clear that the dramatic difference between
the exponential decay of equation (3) and the power law decay
of equation (1) is due to the effects of correlations. Equation (3)
was first obtained in [3, 4]. Then it was re-derived in [9, 10] and
confirmed by Monte Carlo (MC) simulations in [11]. Below
we again confirm equation (3) at 0 < x − a � b by MC
simulations. However, the focus of this paper is on the non-PB
behavior of N(x) at larger distances x −a > b, which has been
predicted in [3, 4] but to our knowledge has never been verified
analytically or numerically.

To bring this prediction to mind, let us focus on a single,
stray Z ion located above the macroion’s surface at x > a + b

(figure 1). References [3, 4] argue that the negative charge of
the correlation hole, −Ze, will spread to a disc of size ∼x as
neighboring Z ions move to occupy the Wigner–Seitz cell the
stray Z ion left behind. This is similar to what happens in a
metallic surface under the influence of an external charge. In
fact, this metal-like polarization of the SCL on the surface of
the macroion can actually be described by an image charge that
appears in the body of the macroion. Because the centers of the
Z ions which form the SCL are typically located at a distance
xc = a +λ above the surface (see figure 1) it is natural to think
that the effective metallic surface is at xmet = xc and therefore
the image is located at −x + 2xmet. The attractive interaction
energy between the stray Z ion and its image is then [16], for
x − xmet � b,

Uim(x) = − Z 2e2

4ε(x − xmet)
. (4)

This attractive image interaction, of course, is a correlation ef-
fect.

The goal of this paper is to verify, by a Monte Carlo (MC)
simulation and an analytical calculation, that an SCL on the
insulating surface of a macroion does behave as a metal, and a
stray Z ion has potential energy Uim(x). The plan of this paper
is as follows. In section 2 we describe our MC procedure. In
section 3, we present our MC results for the screening of a
spherical macroion by Z ions. To a first approximation they
confirm that a stray Z ion at x > a + b has potential energy
Uim(x). This is the most important result of our paper.

At a more detailed level, we see in section 3 that to more
accurately fit equation (4) to our MC data the effective metallic
surface must be lifted slightly above xc. We find that a shift
of 0.21 nm provides the best fit. This shift is explained in
section 4 where we analytically derive equation (4), showing
that there is indeed an attractive interaction energy between
the stray Z ion and its image. We further prove that the
effective metallic surface should be lifted slightly by −ξ = |ξ |,
where 2ξ is the linear screening length of the SCL. In other
words, xmet, in equation (4), should be replaced by xmet =
xc − ξ = xc +|ξ |. We show that, theoretically, ξ = −0.20 nm,
in reasonable agreement with the MC simulation. The fact
that a Wigner-crystal-like SCL has a negative screening radius
was predicted theoretically [17] and confirmed experimentally
for a low-density two-dimensional electron gas in silicon
MOSFETs and GaAs heterojunctions [18, 19] (see also a recent
paper [20]).

In section 5 we add a small concentration of monovalent
salt (for example, NaCl) to our system. We show that the
attractive image interaction persists in this system; however,
the attraction is weaker due to screening.

2. Monte Carlo simulation

Our set-up is similar to the simulations found in [11, 21–25].
Our system is contained within a spherical cell with radius
rmax = 10.0 nm. Centered within the cell is a spherical
macroion with charge QM = −300e and radius RM = 5.0 nm
(−σ = −0.95e nm−2). The system is populated by 100 Z ions
of charge 3e and radius a = 0.4 nm. The mobile particles are
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initialized to random non-overlapping coordinates. The wall of
the spherical cell has a distance of closest approach of 0 so that
a Z ion may be placed with its center at the wall. Therefore
all Z ions are found at a radial distance r within the range
RM + a < r � rmax. After initializing the system, the total
electrostatic energy of the system is calculated as

E = e2

2ε

101∑

i, j;i �= j

qi q j

di j
, (5)

where particle i has charge qi (q1 = QM and for i > 1,
qi = Ze) located at the center of a hard sphere with radius
ηi (η1 = RM and for i > 1, ηi = a). The distance between
particles i and j is di j . The dielectric constant is set to ε = 80
everywhere and there are no interactions with anything outside
of the cell.

Selecting a particle at random, the MC program attempts
to reposition it randomly within a cubic volume of (3.2 nm)3

centered on the particle’s current position. The total
electrostatic energy of the system, E , is calculated after each
attempted move. Modeled as hard spheres, if any of the
particles overlap after an attempted move, such that di j <

ηi + η j , the move is rejected. Additionally, any attempted
move that places a particle outside of the cell, r > rmax, is also
rejected. Otherwise, moves are accepted or rejected based on
the traditional Metropolis algorithm. Simulations attempt 52
billion moves, of which ∼4% are accepted, resulting in each
particle being moved an average of 20 million times. This low
acceptance rate is due to most of the Z ions being condensed
on the macroion surface where their average separation is
b = 1.0 nm; one can increase the rate to ∼8% by shrinking
the volume in which the Z ion is randomly repositioned to
(1.6 nm)3. To ensure thermalization, 5 million moves are
attempted before beginning the analysis of N(r), the Z ion’s
radial distribution.

Following thermalization, N(r) is computed after every
20 000 attempted moves by dividing the simulation space
around the central macroion into bins that are concentric
spherical shells of thickness 0.1 nm, counting the ion
population within each bin, and then calculating the average
Z -ion density of each bin. We now introduce the empirical
mean-field potential, φ(r), which corresponds to the MC N(r)
and is calculated from the radial distributions of the ions in
the following way. First, the electric field is determined at the
outer edge of each spherical shell by applying Gauss’ Law to
the integrated charge. Then, the potential φ(r) is calculated by
discreetly integrating the electric field in the radial direction.
The empirical mean-field potential, φ(r), has nothing to do
with the PB potential obtained by a solution of the spherical
PB equation because, due to correlation effects, the MC N(r)
differs from equation (1). In the present case, Z ions are
strongly condensed at the surface of the macroion and therefore
the potential φ(r) decays so fast with r that the interaction
energy of a stray Z ion, Zeφ(r), becomes less than kBT
already at r > 5.65 nm.

The main point of this paper is that the concentration of Z
ions, N(r), at a distance r from the center of the macroion, is
only weakly influenced by the empirical mean-field potential

Figure 2. The generalization of figure 1 to a spherical geometry. A
stray Z ion with charge Ze is shown in a cross-sectional view at a
distance r from the center of a spherical macroion with charge QM,
which is covered by condensed Z ions (black spheres). The
condensed Z ions are located at an average distance of
Rc ≡ RM + xc = RM + a + λ from the center of the macroion. The
stray Z ion makes a correlation hole with charge −Ze, where the
concentration of Z ions is depleted. The resulting correlation
potential can be modeled as if the Z ion were near a metallic sphere
with effective radius Rmet = Rc + |ξ |. The image charges, −Ze and
−q ′ located at the center and q ′ located at a distance r ′ away from
the center, are shown by white spheres.

energy Zeφ(r) and is mostly determined by the attractive
correlation energy Uc(r). We extract Uc(r) − Uc(rmax) from
the simulation data assuming that Z ions that stray from the
macroion surface are Boltzmann distributed according to

N(r) = N(rmax) exp

(
− Zeφ(r)

kBT
− Uc(r)− Uc(rmax)

kBT

)
,

(6)
so that the change in the attractive correlation energy for a Z
ion moved from rmax to r is

Uc(r)− Uc(rmax) = −kBT ln

(
N(r)

N(rmax)

)
− Zeφ(r), (7)

where we took into account that φ(rmax) = 0 because our
system is neutral.

We need to recalculate the theoretical form of Uim for a
spherical macroion geometry (see figure 2) to test that, for
r − Rmet � b,

�U(r) ≡ [Uc(r)−Uc(rmax)]−[Uim(r)−Uim(rmax)] = 0. (8)

It is known [16] that a charge Ze at a distance r > Rmet

from the center of a conducting sphere with radius Rmet and
a net charge of −Ze induces two image charges within the
sphere. The charge q ′ = −ZeRmet/r is located at a distance
r ′ = R2

met/r from the sphere’s center and the compensating
charge −q ′ is located at the center of the sphere. The net charge
of the macroion and the SCL, −Ze, accounts for the departure
of the stray Z ion and is also fixed at the center of the sphere.
In the presence of these three charges a stray Z ion, located at
r , has potential energy given by

Uim(r) = − (Ze)2

rε
+ Zeq ′

2(r − r ′)ε
− Zeq ′

2rε
. (9)

3



J. Phys.: Condens. Matter 21 (2009) 424104 M S Loth and B I Shklovskii

The net charge −Ze has fixed magnitude and position because,
unlike charges q ′ and −q ′, it is not created by the stray Z
ion polarizing the SCL; therefore, the interaction term that
involves the net charge does not include a factor of 1/2. In
the limit x = r − RM � RM, we recover the planar Uim(x) of
equation (4), because Uim(r) is dominated by the influence of
charge q ′ � −Ze located at r ′ � Rmet − r .

The first term within the parentheses of equation (9) is
written for the case when all but one of the mobile charges
(Z ions) are located, as in a metal, at the surface. This term
then describes a stray Z -ion’s attraction to the fraction of QM

left uncompensated due to its departure. In other words, this
term is used to exclude the stray Z -ion’s self-interaction with
its contribution to the mean-field potential1.

To compare equation (9) to the simulation in the next
section, we take Rmet = RM + xc ≡ Rc, which aligns the
metallic surface with the average position of the centers of the
Z ions that comprise the SCL (see figure 2). Because our
macroion is a sphere and not a plane, the magnitude of its
electric field drops as E ∝ 1/r 2 at r > RM. Therefore, E =
2πσ/ε, used to calculate λ, should be modified slightly since
the Z -ion’s centers are never closer than a to the macroion’s
surface. We introduce σs = σ [RM/(RM + a)]2 to correct
the electric field. This leads to σs = 0.819e nm−2, λs =
0.0913 nm, �s = 5.9 and Rmet = 5.49 nm.

3. Results of MC simulation

�U(r) (equation (8)), the difference between the attractive
correlation energy extracted from the MC simulation and the
result of the image theory, is plotted in figure 3 for Rmet =
5.49 nm (green circles). As expected, when r−Rmet � b, i.e. at
r � 6.5 nm, the difference is significantly less than zero since
in this range the SCL does not function well as a metal due to
its discreteness and, therefore, the attractive correlation energy,
Uc(r), saturates. However, there is also weaker disagreement
for r � 6.5 nm, which decreases with distance from the
macroion. This suggests that we have improperly identified the
radius of the effective metallic sphere used to calculate Uim(r).
To allow for the adjustment of Rmet, we introduce the length
|ξ | so that

Rmet = Rc + |ξ |. (10)

By minimizing the root-mean-square of�U(r) with respect to
|ξ |, on the interval 6.4 nm � r � 7.4 nm, we determined
that |ξ | � 0.21 nm provides the best fit for �U(r) = 0.
The quality of this fit is illustrated in figure 3 (red diamonds).
This small correction |ξ | to Rc indicates that the foundation of
equation (9), the attractive image interaction, is sound.

In section 4, we analytically calculate Uim(x) in order
to find the necessary adjustment in Rmet by considering the
response of a SCL, made up of adsorbed Z ions on a planar
macroion, to the presence of a single stray Z ion above the

1 Actually, N(r) has a tail at r > RM + a. As a result, when a stray Z ion is
located at r > RM + a, depletion of the mean distribution not only occurs at
the surface of the macroion, but a small fraction, δ, of the total depletion also
occurs at distances larger than r . For r = 6.1 nm this fraction is 0.02. As a
result, the absolute value of this interaction energy is smaller than Z 2e2/r by
∼2%. In equation (9) and below we neglect this small effect.

Figure 3. The difference,�U(r) (equation (8)), between the
correlation attraction energy extracted from the MC simulation and
the result of the image theory, as a function of a stray Z -ion’s
distance from the center of the macroion for three different values of
the adsorbed Z -ion’s screening length, 2ξ . The length, |ξ |,
determines the increased radius, Rmet = RM + a + λ+ |ξ |, of the
effective metallic sphere used to calculate Uim(r) (equation (9)). The
green circles correspond to ξ = 0, assumed in the original theory
of [3, 4]. The red diamonds correspond to the best fit to zero,
ξ = −0.21 nm. The blue squares correspond to ξ = −0.42 nm and
are shown for comparison.

SCL. It is determined that the SCL screens the potential of
the stray Z ion with a negative screening length, 2ξ , where
ξ = −0.20 nm. This moves the effective metallic surface
further away from the macroion’s surface by |ξ | = 0.20 nm, in
reasonable agreement with the MC data (see figures 1 and 2).

In figure 4, the concentration N(r) obtained from the MC
simulation is compared to

N(r) = N(rmax) exp

(
− Zeφ(r)

kBT
− Uim(r)− Uim(rmax)

kBT

)
,

(11)
which uses ξ = −0.21 nm to calculate Uim(r) (both φ(r)
and N(rmax) are obtained from the MC simulation). The
agreement between the MC data and equation (11) is obvious
when r � 6.5 nm. In figure 4, we also compare equation (3),
modified for a spherical geometry,

N(r) = σs

Zeλs
exp

[
− (r − RM − a)

λs

]
, (12)

to the MC concentration data. At small distances, r − RM +
a � b, i.e. r � 5.8 nm, we find good agreement with the
exponential decay predicted in [3, 4] and confirmed in [9–11].

Let us now comment on what happens at larger distances
from the macroion, which are not shown in figure 4 and cannot
be studied well with the small size of the simulation cell used
in this paper. According to [3, 4], at distances larger than

 =
(

eλ

2π Zσ lB

)1/2

exp

( |μ|
2kBT

)
(13)

from the planar macroion the PB approximation takes over and

N(x) = 1

2π Z 2lB

1

(+ x − a)2
. (14)

4
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Figure 4. Concentration of Z ions, N(r), as a function of distance
from the center of the macroion, starting at RM + a = 5.4 nm. The
circles represent the data from the MC simulation. The result of the
image theory, equation (11), is shown by short, blue dashes. The
medium length, red dashes show equation (12). The long, green
dashes show the Gouy–Chapman solution (equation (1)), with λs

substituted for λ. The error bars for the MC data are smaller than the
size of the symbols.

Here μ is the chemical potential of a Z ion in an SCL. It has
been shown that for a SCL on a charged background (one-
component plasma), at 1 < � < 15, μ is approximated well
by [4, 26]

μ = −kBT (1.65� − 2.61�1/4 + 0.26 ln� + 1.95), (15)

where the first term of this expansion corresponds to the
chemical potential of a Wigner crystal. For our parameters,
Z = 3 and σ = σs = 0.819e nm−2, this leads to the
length  = 5.18 nm. Then, the approximate extension of
equation (14) to the spherical geometry using x = r − RM

at r = 7.55 nm gives ln[N(r)Zeλs/σs] = −8.65, very close
to the MC result −8.77 (see figure 4). The idea behind the
results of equations (13) and (14) is that the correlation physics
at small distances x − xc �  produces a new boundary
condition on the concentration of Z ions for the long distance
solution of the PB equation [3, 4].

The authors of a recent paper [27] have already studied
N(r) at large distances by MC simulation in a much larger
spherical cell and found that it is in agreement with the
predictions of the PB approach based on the correlation driven
boundary condition. They, however, did not identify the
image domain of distances r which we concentrate upon here.
Thus, all three asymptotic regimes, predicted in [3, 4], namely
equation (3) at x − a < b, equation (4) at b < x − a � 

and equation (14) at x − a > , are now confirmed by
MC simulations.

We have shown above that the standard mean-field
theory [1, 2] fails to describe screening by multivalent
counterions. Let us now show that another mean-field
approximation, which we call the empirical mean field,
fails more dramatically. The empirical mean-field potential,
φ(r), was introduced in section 2 and is obtained using the
distribution of charge realized in our MC simulation. In
figure 5, we compare the Z -ion concentration obtained from

Figure 5. Concentration of Z ions, N(r), as a function of distance
from the center of the macroion. The MC concentration (circles; the
same data as in figure 4) differs strongly from the concentration of Z
ions (red triangles) obtained from equation (16) with the empirical
mean-field potential φ(r).

the MC simulation to the Z -ion concentration predicted using
the empirical mean-field potential:

N(r) = N0 exp

(
− Zeφ(r)

kBT

)
. (16)

Here, N0 = 2.18 × 10−2 nm−3 is the concentration necessary
to normalize the number of Z ions, in the range 5.4 nm
< r < 10.0 nm, to 100. Clearly, the empirical mean-field
potential is not self-consistent; equation (16) predicts that there
are many more Z ions, at r > 6.0 nm, than are actually present
in the distribution that produced φ(r). The distribution of the Z
ions, for r − Rmet � b, is strongly influenced by the attractive
correlation interaction and, therefore, cannot be predicted by
the empirical mean-field interaction alone.

4. Theory of image potential and effective metallic
surface

In this section we return to the plane geometry of figure 1 and
analytically derive equation (4) for Uim(x). In the process of
this derivation, we find the theoretical location, xmet, of the
effective metallic surface. The probe charge, a stray Z ion, is
positioned far above the plane at x ′ = x � b and � = 0, where
x ′ is the axis and � is the radius of the cylindrical coordinate
system (x ′, �, θ ). An SCL of Z ions is located in the (�, θ )
plane at x ′ = xc, where the typical distance that separates
adjacent Z ions is b.

The plan of this section consists of (1) determining the
analytic solution for the total potential of the system, ψ(�, x ′),
(2) presenting it as a sum of two potentials: one of the stray
Z ion and the other of the induced charge density of the SCL,
ψind(�, x ′) (the potential of a point-like image) and (3) finding
the position of the effective metallic plane, xmet, so that the
attractive interaction energy 1

2 Zeψind(0, x) = Uim(x). Below,
we show that xmet = xc − ξ , where 2ξ is the screening length
of the SCL, which we also calculate.

To find the potentialψ(�, x ′)we solve Poisson’s equation:

∇2ψ
(
�, x ′) = −4π

ε
ρ(�, x ′), (17)

5
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where ρ(�, x ′) = ρext(�, x ′) + ρind(�, x ′), with ρext =
Zeδ(�)δ(x ′ − x)/(π�), and the charge density that is induced
within the SCL is given by

ρind(�, x ′) = Ze[n(ψ(�, xc))− n(0)]δ(x ′ − xc)

= Zeψ(�, xc)
dn

dψ
δ(x ′ − xc)

= −(Ze)2ψ(�, xc)
dn

dμ
δ(x ′ − xc). (18)

Here, n(ψ), is the number of Z ions per unit area as a function
of the local total potential, ψ(�, xc), and μ is the chemical
potential of the SCL. We consider the case, x − xc � b, when
the stray Z ion produces a weak potential in the x ′ = xc plane
(Zeψ(�, xc)/kBT � 1). This allows us to linearize �ind with
respect to ψ , in equation (18). Rewriting equation (17) with
the help of equation (18) results in

∇2ψ
(
�, x ′) = −4π

ε
ρext(�, x ′)+ 1

ξ
ψ(�, xc)δ(x

′ − xc), (19)

where

ξ = ε

4π(Ze)2
dμ

dn
= 1

2κ
, (20)

and κ is the inverse screening length of the SCL of adsorbed Z
ions [20, 28].

In order to calculate ξ we use μ(n) as given by
equation (15) and the definition of � from equation (2) and
b = (πn)−1/2. For Z = 3, σ = σs = 0.819e nm−2 and
ε = 80, we find that ξ = −0.20 nm.

In order to solve equation (19) for ψ(�, x ′), we substitute

ψ(�, x ′) =
∫ ∞

0
k Ak(x

′)J0(k�) dk, (21)

into equation (19), where Ak(x ′) are the coefficients of the
expansion and J0(k�) is the zeroth-order Bessel function. This
yields [28]

ψ(�, x ′) = Ze

ε

1√
(x − x ′)2 + �2

− Ze

ε

∫ ∞

0

1

2kξ + 1
exp [−k(x ′ + x − 2xc)]J0(k�)dk.

(22)

Because the screening length ξ < 0, the second term diverges.
To obtain a solution despite this pole, following [20], we
consider the contribution to ψ(�, x ′) from k � 1/|ξ | only.
Such an approach is valid if the stray Z ion, and the observation
point x ′, are a large distance away from the SCL: (x −
xc), (x ′ − xc) � |ξ |. This allows us to expand 1/(2kξ + 1) in
equation (22) around k = 0, so that 1/(2kξ + 1) � 1 − 2kξ ,
and we arrive at

ψ(�, x ′) = Ze

ε

√
�2 + (x − x ′)2

− Ze

ε
√
�2 + (x ′ + x − 2xc)2

+ 2(x ′ + x − 2xc)Zeξ

ε
[
�2 + (x ′ + x − 2xc)2

]3/2
. (23)

The first term of equation (23) is the potential created directly
by the stray Z ion. The other two terms are the first two terms
of the expansion of the induced potential, ψind(�, x ′), with
respect to ξ . We are now in a position to recast ψind(0, x) at
(x − xc) � |ξ |, as being created by an image charge a distance
s below the stray Z ion:

1

2
Zeψind(0, x) = − (Ze)2

4(x − xc)ε
+ ξ

(Ze)2

4(x − xc)2ε

� (Ze)2

2sε
= Uim(x), (24)

where s = 2(x − xc + ξ). Specifying that the metallic plane
must lie halfway between the real charge and the image charge
sets its position at xmet = x − s/2 = xc − ξ . Therefore the
effective metallic plane is found a distance ξ above the plane
of the adsorbed Z -ion’s centers (figure 1). This agrees with
the statement of [20] that the potential created by the stray Z
ion is negative in the x ′ = xc plane. The theoretical value
ξ = −0.20 nm is in reasonable agreement with our MC result,
ξ = −0.21 nm (section 3). Moreover, we have demonstrated
that the image attraction predicted in [3, 4] can be derived
analytically in the limit x � b.

5. Screening the image by adding 1:1 salt

In this section we modify our system to include a small
concentration of 1:1 salt molecules such as NaCl. By taking
into account the effect of screening on the attractive interaction
energy between a stray Z ion and its image, Uim, we obtain a
new prediction for the concentration of Z ions, N(r), which
is in reasonable agreement with the new MC results. In
calculating Uim we assume that the concentration c of 1:1 salt
is so small that the total potential ψ at any point in the bulk
solution (r � 6.0 nm) obeys the linearized Poisson–Boltzmann
equation:

∇2ψ = κ2
bψ, (25)

where 1/κb is the Debye–Hückel (DH) screening length:

1

κb
=

√
εkBT

8πe2c
. (26)

The exact solution of equation (25) for a point charge a distance
r − Rmet away from the surface of a grounded metallic sphere
in a weak electrolyte is known [29]; however, we will avoid
the complexity of this solution and approximate the spherical
macroion and its SCL as a grounded metallic plane. As seen
in figure 6, where equation (4) is used to calculate N(r) (short
blue dashes) for c = 0, one obtains reasonable agreement with
the MC N(r) (circles) without using equation (9) as we did
in section 3. This demonstrates that the influence of the total
central charge, −Ze − q ′, is very small. The reason for this is
that, when a stray Z ion is close to the macroion surface, the
total central charge is much smaller than the image charge q ′.
Additionally, the central charge is much further from the stray
Z ion than the image charge q ′. When the system includes 1:1
salt, the influence of the total central charge is further reduced
due to screening.
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Figure 6. Concentration of Z ions, N(r), in a weak electrolyte
solution, as a function of distance from the center of the macroion.
The shapes represent the data from the MC simulations for two
different concentrations of 1:1 salt: 15.2 mM (triangles) and 0
(circles). The result of the screened image theory, equation (28) with
x = r − Rmet + xmet, is shown by medium length, red dashes for
c = 15.2 mM and short blue dashes for c = 0. The error bars for the
MC data are smaller than the size of the symbols.

Consider a Z ion which is submerged in a weak electrolyte
solution with dielectric constant ε, and is a distance x − xmet

above a grounded metallic plane located at xmet (see figure 1).
For this system, the solution to equation (25), subject to the
boundary condition ψ(xmet) = 0, can be found using the
method of images [29]. To satisfy the boundary condition,
the image potential must exactly cancel the potential of our Z
ion in the metallic plane. Such an image potential is provided
by the DH screened potential of a charge (−Ze) located at
x ′ = −x + 2xmet.

The interaction energy of a stray Z ion with its screened
image is now readily calculated and is given by

Uim(x) = − Z 2e2

4ε(x − xmet)
exp(−2κb[x − xmet]). (27)

In the limit of infinite dilution c → 0, or equivalently
κb → 0, equation (27) is equal to equation (4), as expected.
Onsager and Samaras [30] obtained the same result, but with
the opposite sign, for an ion’s interaction with its image at
an electrolyte–air interface resulting in a repulsive force. To
compare equation (27) to the spherical geometry of our MC
simulation, we take x = r +xmet − Rmet using Rmet = Rc +|ξ |.

The MC simulation described in section 2 was modified to
include M 1:1 salt molecules, resulting in M ions of charge
e- and M ions of charge −e. All of the monovalent salt
ions have their charge at the center of a hard sphere with
radius η = 0.2 nm. We studied a 1:1 salt concentration
of 15.2 mM corresponding to the addition of M = 34
salt molecules to the solution. The following changes were
made to the MC simulation to properly incorporate the new
ions. The sum used to calculate the total electrostatic
energy of the system (equation (5)) was changed to include
the monovalent ions, and the monovalent ions were also
incorporated into the calculation of the empirical mean-field
potential φ(r).

In figure 6, the concentration N(r) obtained from the MC
simulations is compared to

N(r) = N(r0) exp

(
− Ze[φ(r)− φ(r0)]

kBT

− Uim(r)− Uim(r0)

kBT

)
, (28)

which uses ξ = −0.21 nm to calculate Uim(x) (equation (27))
(both φ(r) and N(r0) are obtained from the MC simulations).
Because there are no screening particles outside of the
simulation cell, Z ions near the wall of the cell are repelled
from this interface [31] even though there is no jump in the
dielectric constant. To keep this effect separate from the
image interaction of interest, we chose our reference point at
r0 = 8.05 nm instead of rmax. Because the stray Z -ion’s
attraction to the image is reduced by screening, we see that
in figure 6 the concentration of Z ions is higher at distances
r > 60 nm when 1:1 salt is present in the solution. Even with
the addition of 1:1 salt to the solution the agreement between
the MC data and equation (28) for r � 6.5 nm is reasonable,
demonstrating that the metallic behavior of the SCL on the
macroion surface survives, and that the image attraction is still
important in determining the Z ion’s concentration.

6. Conclusion

To summarize, we have studied the role of correlations among
adsorbed Z ions in attracting stray Z ions and influencing their
distribution in the screening atmosphere. Adsorbed Z ions on
the surface of the macroion form a strongly correlated liquid
(SCL). The SCL acts as an effective metallic surface for Z
ions that stray from the macroion surface to distances larger
than the average distance between Z ions of the SCL. Using
Monte Carlo (MC) simulations, we verified the theoretical
prediction [3, 4] that a stray Z ion is attracted to its electrostatic
image created behind the effective metallic surface. As a small
correction to [3, 4], however, our MC simulation showed that
the effective metallic surface is not aligned with the average
position of the adsorbed Z -ion’s centers, but is slightly above
the adsorbed Z -ion’s centers. This offset was calculated
analytically to be |ξ |, where 2ξ is the screening length of
the SCL. Our analytic theory is in reasonable agreement with
the MC data. Extending the original image theory of [3, 4],
we demonstrated that the attractive image interaction, while
screened, persists in a weak monovalent electrolyte.

In [15] the attractive image interaction, which we have
studied here, was used to interpret the origin of the negative
chemical potential of the condensed Z ions (equation (15)).
As a stray Z ion, attracted to its image, approaches the surface
of the macroion it reaches a distance, r ∼ RM + b, where the
SCL fails to act as a good metal and the correlation attraction
Uc(r) saturates at μ ∼ −Z 2e2/4εb; this saturation can be seen
in figure 4 as the growth of �U(r) at r < 6.5 nm. It is this
negative chemical potential, brought about by the attractive
image interaction, at r � Rmet + b, which drives charge
inversion (over-compensation of the macroion’s bare charge
with condensed Z ions), a phenomenon that has generated
much interest [3–11]. Thus, we believe that this paper helps
to clarify the origin of charge inversion.
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Above, we have assumed for simplicity that the dielectric
constant of the macroion and the surrounding water are the
same, ε = εw � 80. We now briefly consider a more
realistic system where the macroion has a dielectric constant
εm � εw � 80, and we show that all of our results remain
valid with very small corrections. For a single Z -ion a distance
x above the planar interface of two dielectrics with εm � 1 for
x ′ < 0 and εw � 80 for x ′ > 0, the Z -ion’s interaction energy
with its image, produced by the polarization of the dielectric,
is given by

Ud−im � Z 2e2

4εwx
. (29)

Because of this repulsive image, the energy of a point like Z -
ion is not a minimum at the surface of the macroion. Instead, it
was shown in [15] that a point like Z -ion minimizes its energy
a small distance away from the macroion. The finite radius
of the Z -ions we have considered is larger than the optimum
position calculated. Therefore, the position of a condensed Z -
ion is not strongly affected by the smaller dielectric constant of
the macroion.

For r � RM + b, we have demonstrated that the
distribution of Z -ions in our system is determined mostly by
their interaction with the effective metallic surface produced
by the SCL. Upon introducing a macroion with εm � εw ,
the derivation presented in section 4, for the position of the
effective metallic surface, must be modified to account for the
new dielectric interface. The entire effect of the new dielectric
interface can be accounted for by modifying the chemical
potential (equation (15)), which determines the screening
length of the SCL (equation (20)), and thus determines the
position of the effective metallic surface (equation (24)).
Corrections to the chemical potential (equation (15)) due to
images formed by the macroion can be calculated as the
interaction of the SCL with its image. In the Wigner crystal
approximation this interaction was studied in [15, 32]. The
interaction energy was shown to decrease exponentially with
the distance between the SCL and its image. For a distance
∼2 × 0.5 nm = 1 nm, this interaction provides a small
correction of less than 1% for the chemical potential (see
equation (17) of [32] and equation (41) of [15]). This is why
it is reasonable to extend the results of this paper to the case
when εm � εw .

Acknowledgments

We are grateful to T T Nguyen for his help in writing
the MC code, to A L Efros and Y Levin for sharing their

preprints [20, 27] and useful comments on the manuscript, to
A Yu Grosberg for useful discussions and to B Skinner for
proofreading the draft. MSL. wishes to thank FTPI of the
University of Minnesota for financial support.

References

[1] Gouy M 1910 J. Phys. Theor. Appl. 9 457
[2] Chapman D L 1913 Phil. Mag. 25 475
[3] Perel V I and Shklovskii B I 1999 Physica A 274 466
[4] Shklovskii B I 1999 Phys. Rev. E 60 5802
[5] Grosberg A Yu, Nguyen T T and Shklovskii B I 2002 Rev. Mod.

Phys. 74 329
[6] Levin Y 2002 Rep. Prog. Phys. 65 1577
[7] Boroudjerdi H, Kim Y W, Naji A, Netz R R,

Schlagberger X and Serr A 2005 Phys. Rep. 416 129
[8] Messina R 2009 J. Phys.: Condens. Matter 21 113102
[9] Moreira A G and Netz R R 2000 Europhys. Lett. 52 705

[10] Burak Y, Andelman D and Orland H 2004 Phys. Rev. E
70 016102

[11] Moreira A G and Netz R R 2001 Phys. Rev. Lett. 87 078301
[12] Rouzina I and Bloomfield V A 1996 J. Phys. Chem. 100 9977
[13] Gronbech-Jensen N, Mashl R J, Bruinsma R F and

Gelbart W M 1997 Phys. Rev. Lett. 78 2477
[14] Shklovskii B I 1999 Phys. Rev. Lett. 82 3268
[15] Nguyen T T, Grosberg A Yu and Shklovskii B I 2000 J. Chem.

Phys. 113 1110
[16] Landau L D, Lifshitz E M and Pitaevskii L P 1984 Course of

Theoretical Physics (Electrodynamics of Continuous Media)
2nd edn, vol 8 (New York: Pergamon)

[17] Bello M S, Levin E I, Shklovskii B I and Efros A L 1981 Sov.
Phys.—JETP 53 822

[18] Kravchenko S V, Rinberg D A, Semenchinsky S G and
Pudalov V 1990 Phys. Rev. B 42 3741

[19] Eisenstein J P, Pfeifer L N and West K W 1992 Phys. Rev. Lett.
68 674

[20] Efros A L 2008 Phys. Rev. B 78 155130
[21] Lenz O and Holm C 2008 Eur. Phys. J. E 26 191
[22] Diehl A and Levin Y 2006 J. Chem. Phys. 125 054902
[23] Diehl A and Levin Y 2008 J. Chem. Phys. 129 124506
[24] Quesada-Perez M, Martin-Molina A and

Hidalgo-Alvarez R 2005 Langmuir 21 9231
[25] Martin-Molina A, Maroto-Centeno J A, Hidalgo-Alvarez R and

Quesada-Perez M 2008 J. Chem. Phys. 125 124506
[26] Totsuji H 1978 Phys. Rev. A 17 399
[27] dos Santos A P, Diehl A and Levin Y 2009 J. Chem. Phys.

130 124110
[28] Ando T, Fowler A B and Stern F 1982 Rev. Mod. Phys. 54 437
[29] Ohshima H 1994 Adv. Colloid Interface Sci. 53 77
[30] Onsager L and Samaras N N T 1943 J. Chem. Phys. 2 528
[31] Netz R R 1999 Phys. Rev. E 60 3174
[32] Goldoni G and Peeters F M 1996 Phys. Rev. B 53 4591

8

http://dx.doi.org/10.1051/jphystap:019100090045700
http://dx.doi.org/10.1016/S0378-4371(99)00379-9
http://dx.doi.org/10.1103/PhysRevE.60.5802
http://dx.doi.org/10.1103/RevModPhys.74.329
http://dx.doi.org/10.1088/0034-4885/65/11/201
http://dx.doi.org/10.1016/j.physrep.2005.06.006
http://dx.doi.org/10.1088/0953-8984/21/11/113102
http://dx.doi.org/10.1209/epl/i2000-00495-1
http://dx.doi.org/10.1103/PhysRevE.70.016102
http://dx.doi.org/10.1103/PhysRevLett.87.078301
http://dx.doi.org/10.1021/jp960458g
http://dx.doi.org/10.1103/PhysRevLett.78.2477
http://dx.doi.org/10.1103/PhysRevLett.82.3268
http://dx.doi.org/10.1063/1.481890
http://dx.doi.org/10.1103/PhysRevB.42.3741
http://dx.doi.org/10.1103/PhysRevLett.68.674
http://dx.doi.org/10.1103/PhysRevB.78.155130
http://dx.doi.org/10.1140/epje/i2007-10260-x
http://dx.doi.org/10.1063/1.2222372
http://dx.doi.org/10.1063/1.2982163
http://dx.doi.org/10.1021/la0505925
http://dx.doi.org/10.1103/PhysRevA.17.399
http://dx.doi.org/10.1063/1.3098556
http://dx.doi.org/10.1103/RevModPhys.54.437
http://dx.doi.org/10.1016/0001-8686(94)00213-4
http://dx.doi.org/10.1063/1.1749522
http://dx.doi.org/10.1103/PhysRevE.60.3174
http://dx.doi.org/10.1103/PhysRevB.53.4591

	1. Introduction
	2. Monte Carlo simulation
	3. Results of MC simulation
	4. Theory of image potential and effective metallic surface
	5. Screening the image by adding 1:1 salt
	6. Conclusion
	Acknowledgments
	References

